MicroRNA-1 Downregulation Increases Connexin 43 Displacement and Induces Ventricular Tachyarrhythmias in Rodent Hypertrophic Hearts

نویسندگان

  • Antonio Curcio
  • Daniele Torella
  • Claudio Iaconetti
  • Eugenia Pasceri
  • Jolanda Sabatino
  • Sabato Sorrentino
  • Salvatore Giampà
  • Mariella Micieli
  • Alberto Polimeni
  • Beverley J. Henning
  • Angelo Leone
  • Daniele Catalucci
  • Georgina M. Ellison
  • Gianluigi Condorelli
  • Ciro Indolfi
چکیده

Downregulation of the muscle-specific microRNA-1 (miR-1) mediates the induction of pathologic cardiac hypertrophy. Dysfunction of the gap junction protein connexin 43 (Cx43), an established miR-1 target, during cardiac hypertrophy leads to ventricular tachyarrhythmias (VT). However, it is still unknown whether miR-1 and Cx43 are interconnected in the pro-arrhythmic context of hypertrophy. Thus, in this study we investigated whether a reduction in the extent of cardiac hypertrophy could limit the pathological electrical remodeling of Cx43 and the onset of VT by modulating miR-1 levels. Wistar male rats underwent mechanical constriction of the ascending aorta to induce pathologic left ventricular hypertrophy (LVH) and afterwards were randomly assigned to receive 10mg/kg valsartan, VAL (LVH+VAL) delivered in the drinking water or placebo (LVH) for 12 weeks. Sham surgery was performed for control groups. Programmed ventricular stimulation reproducibly induced VT in LVH compared to LVH+VAL group. When compared to sham controls, rats from LVH group showed a significant decrease of miR-1 and an increase of Cx43 expression and its ERK1/2-dependent phosphorylation, which displaces Cx43 from the gap junction. Interestingly, VAL administration to rats with aortic banding significantly reduced cardiac hypertrophy and prevented miR-1 down-regulation and Cx43 up-regulation and phosphorylation. Gain- and loss-of-function experiments in neonatal cardiomyocytes (NCMs) in vitro confirmed that Cx43 is a direct target of miR-1. Accordingly, in vitro angiotensin II stimulation reduced miR-1 levels and increased Cx43 expression and phosphorylation compared to un-stimulated NCMs. Finally, in vivo miR-1 cardiac overexpression by an adenoviral vector intra-myocardial injection reduced Cx43 expression and phosphorylation in mice with isoproterenol-induced LVH. In conclusion, miR-1 regulates Cx43 expression and activity in hypertrophic cardiomyocytes in vitro and in vivo. Treatment of pressure overload-induced myocyte hypertrophy reduces the risk of life-threatening VT by normalizing miR-1 expression levels with the consequent stabilization of Cx43 expression and activity within the gap junction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Focal energy deprivation underlies arrhythmia susceptibility in mice with calcium-sensitized myofilaments.

RATIONALE The Ca(2+) sensitivity of the myofilaments is increased in hypertrophic cardiomyopathy and other heart diseases and may contribute to a higher risk for sudden cardiac death. Ca(2+) sensitization increases susceptibility to reentrant ventricular tachycardia in animal models, but the underlying mechanism is unknown. OBJECTIVE To investigate how myofilament Ca(2+) sensitization creates...

متن کامل

Accelerated onset and increased incidence of ventricular arrhythmias induced by ischemia in Cx43-deficient mice.

BACKGROUND Myocardial ischemia causes profound changes in both active membrane currents and passive electrical properties. Because these complex changes develop and progress concomitantly, it has not been possible to elucidate the relative contributions of any one component to arrhythmogenesis induced by acute ischemia. Cx43+/- mice express 50% of the normal level of connexin43 (Cx43), the majo...

متن کامل

Enhanced transmural fiber rotation and connexin 43 heterogeneity are associated with an increased upper limit of vulnerability in a transgenic rabbit model of human hypertrophic cardiomyopathy.

Human hypertrophic cardiomyopathy, characterized by cardiac hypertrophy and myocyte disarray, is the most common cause of sudden cardiac death in the young. Hypertrophic cardiomyopathy is often caused by mutations in sarcomeric genes. We sought to determine arrhythmia propensity and underlying mechanisms contributing to arrhythmia in a transgenic (TG) rabbit model (beta-myosin heavy chain-Q403)...

متن کامل

Cx43 CT domain influences infarct size and susceptibility to ventricular tachyarrhythmias in acute myocardial infarction.

AIMS Hearts of mice expressing K258stop in place of connexin43 (Cx43) protein were subjected to acute myocardial infarction in order to assess the importance of Cx43 regulation on infarct size and arrhythmia susceptibility. This mutation K258stop prevents chemical regulation of Cx43 channels, including by low intracellular pH. METHODS AND RESULTS Langendorff-perfused hearts of mice harbouring...

متن کامل

Factors involved in the susceptibility of spontaneously hypertensive rats to low K+-induced arrhythmias.

Disorders of intracellular Ca2+ homeostasis and intercellular coupling are thought to be crucial in the initiation and maintenance of malignant arrhythmias. The aim of this study was to investigate possible arrhythmogenic factors in spontaneously hypertensive rats (SHR) as well as their susceptibility to low K+-related arrhythmias. The experiments were performed on isolated hearts of 13 weeks-o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013